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Abstract. The energy of normal liquid 3He is obtained using the lowest order constrained variational
(LOCV) method. In order to test the convergence of the cluster expansion series, the three-body cluster
energy is calculated, with the LOCV correlation functions, and by imposing the normalization constraint
on the two-body distribution function which includes three-body cluster correlations (LOCVE). It is shown
that the normalization constraint plays an important role in keeping the higher cluster terms small. The
resulting LOCVE calculation for the ground state energy of liquid 3He is compared with the available
experimental data and the prediction from different theoretical techniques.

PACS. 61.20.Gy Theory and models of liquid structure – 61.20.Ne Structure of simple liquids –
67.55.-s Normal phase of liquid 3He

1 Introduction

Liquid helium 3 is a very exceptional system. It behave’s
like a normal liquid and obeys the Landau Fermi liq-
uid theory when the temperature is sufficiently low i.e.
Tc = 0.0026 K < T < 0.16 K, while it becomes superfluid
below the critical temperature Tc. This shows the impor-
tant effects of many-body correlations and the interatomic
interaction which has a strong repulsive hard-core. In this
paper we deal only with the normal-liquid phase of 3He
since we have its experimental equation of state [2].

There are three proposes in studying such a system:
(i) to obtain the normal liquid helium-3 properties and
compare the results with experiment, (ii) to test differ-
ent many-body methods against each other and (iii) to
investigate the validity of the LOCV techniques.

Because of the simplicity of the interaction, most of
the available many-body methods have been applied to
liquid 3He. Therefore, this system can be considered as
a good testing ground for comparison of different many-
body techniques.

In a series of papers [3,4], the lowest order constrained
variational (LOCV) method was developed for calculating
the properties of homogeneous nuclear fluids with realis-
tic nucleon-nucleon interactions [5]. In 1998, this approach
was further generalized to include more sophisticated in-
teractions such as the UV14 [5], the AV14 [6] and the new
argonne AV18 [7] as well as the Reid [5] and ∆-Reid [4,8]
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potentials. For a wide range of models our LOCV calcu-
lations agree well with the results of fermion hypernetted
chain (FHNC) calculations. The LOCV calculations have
been performed for a number of central potentials and are
in agreement with the essentially exact numerical solu-
tions obtained by Monte Carlo techniques [3,4]. Despite
this agreement for model problems, there has been some
dispute about the convergence of LOCV results in calcula-
tions, which employ realistic nucleon-nucleon interactions
that are strongly spin-dependent and which, in particular,
contain a sizeable tensor force. This argument was tested
by calculating the energy of the three-body cluster contri-
bution in nuclear matter, and the normalization integral
〈ψ | ψ〉, both at zero and finite temperatures [9]. It was
shown that 〈ψ | ψ〉 is normalized within one percent, and
that the three-body cluster energy is less than 1 MeV for
kf ≤ 1.6 fm−1.

Our LOCV calculation is a fully self-consistent tech-
nique that is capable of dealing with the well-defined phe-
nomenological potentials such as the∆-Reid (the modified
Reid potential with an allowance for ∆(1234) degrees of
freedom, see references [4,8]) potential. The ∆ state, be-
ing the most important configuration which modifies the
nuclear force, might be the key to the understanding of
three-body forces [10]. The results suggest that the LOCV
method reasonably describes the properties of nucleonic-
matter at both zero and finite temperatures [4,10].

Furthermore, our calculations at zero temperature
with the UV14 and AV18 potentials [10] shows a good
agreement with more sophisticated calculation such
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as the variational fermion hypernetted chain method
(FHNC) [6,11].

The LOCV method has been also developed for calcu-
lating the various properties of homogeneous nuclear flu-
ids, such as hot and frozen neutron, nuclear and β-stable
matter with realistic nucleon-nucleon interactions [10]. In
these works the liquid-gas phase transition and corre-
sponding critical temperature were found.

Recently, we applied LOCV formalism to the homoge-
neous electron fluid at finite temperature [12] and found
satisfactory results.

However, liquid 3He is a much more dense system
than both nuclear matter and the electron fluid [12]. In
other words 3He, atoms are approximately three times
more compressed than the nucleons in nuclear matter. So
in general, the conventional many-body theories such as
the Brueckner-Bethe calculation do not work. We also ex-
pect that the cluster expansion series does not converge
as it does for nuclear matter, especially as we increase
the density.

Given the above arguments, in this work we shall at-
tempt to calculate the properties of uniform liquid helium-
3 by using different 3He–3He potentials, and we shall in-
vestigate the convergence of the cluster expansion.

Various many-body techniques have been applied to
3He fluid: Variational, Diffusion and Euler Monte Carlo
(VMC, DMC, EMC) [13], variational Fermi-Hypernetted-
Chain (FHNC) [14,15] and Density Functional Approxi-
mation (DFA) [16]. We also compare our results with these
techniques and the available experimental data [2] to find
out the accuracy of LOCV calculations with pure central
forces.

The rest of this paper is planned as follows: in Sec-
tion 2 we present the uniform 3He fluid Hamiltonian with
a short description of the lowest order constrained vari-
ational method, and the evaluation of its ground state
energy. The three-body cluster energy is derived in Sec-
tion 3. Finally, in Section 4 we present the results and
further discussions.

2 The LOCV formalism

The total Hamiltonian of the liquid 3He is usually written
as [1]:

H3He =
N∑

i=1

p2
i

2m
+

1
2

N∑
i�=j

v(ij), (1)

where v(ij) is the interatomic potential. In this work we
consider Lennard-Jones and Aziz potentials [17].

In the LOCV method, we use an ideal Fermi gas type
wave function for the single particle states and we use vari-
ational techniques to find the wave function of interacting
system [3,4,11], i.e.

ψ = FΦ, (2)

and (where S is a symmetrizing operator),

F = S
∏
i>j

f(ij). (3)

In general, the Jastrow correlation functions f(ij) are op-
erators. In the case of 3He fluid however because of the
simplicity of interatomic interaction we assume them to
depend only on the relative distance of two particles.

The 3He fluid energy is written as [3,4,11],

E = TF + EMB [f ]. (4)

TF is simply the Fermi gas kinetic energy, and is defined by

TF = (Ωρ)−1
∑
k,στ

�
2k2

2m
θ(kF − k). (5)

The fluid density ρ will fix the Fermi-momentum kF (=
(3π2ρ)

1
3 ).

The many-body energy term EMB [f ] is calculated by
constructing a cluster expansion for the expectation value
of our Hamiltonian H3He of equation (1). Then we only
keep the first two terms in a cluster expansion of the en-
ergy functional [18] such as:

E[f ] =
1
N

〈Ψ |H |Ψ〉
〈Ψ |Ψ〉 = TF +EMB = TF +E2+E3+. . . (6)

The two-body energy term is defined as

E2 = (2N)−1
∑
ij

〈ij |V|ij 〉a (7)

where

V(12) = − �
2

2m
[f(12), [∇2

12, f(12)]+f(12)V (12)f(12), (8)

and the two-body antisymmetrized matrix element
〈ij |V|ij 〉a are taken with respect to the single-particle
functions composing Φ, i.e. plane-waves.

In the LOCV formalism, EMB is approximated by E2,
and one hopes that the normalization constraint makes
the cluster expansion converges very rapidly and bring
the many-body effect into the E2 term.

For the 3He fluid, because of the choice of correla-
tion functions, the two-body effective interaction in equa-
tion (8) is reduced to the following equation:

V(12) =
�

2

m
(∇f(12))2 + f(12)2v(12). (9)

Now, by using plane waves as the single-particle states,
equation (7) reduces to:

E2 =
1
2
ρ

∫
GF (r)V(r)dr, (10)

where
GF (r) = [1 − 1

2
l2(kF r)] (11)

and

l(x) = 3
J1(x)
x

. (12)

Jl(x) are the familiar spherical Bessel functions.
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The normalization constraint [19] is given by:

ρ

∫
(G2(r12) − 1)dr12 = −1, (13)

where [18]

G2(r12) = f2(r12)
N∑

n=2

[∆G(r12)]n. (14)

The first two terms that we intend to use later are:

[∆G2(r12)]2 = GF (r12),

[∆G2(r12)]3 =

− ρ

∫
dr13h(r13)[l2(kF r23) − l(kF r12)l(kF r23)l(kF r13)]

+ ρ

∫
dr13h(r13)h(r23)G3F (r12, r23, r13),

G3F (r12, r23, r13) = 1 − 1
2

[
l2(kF r12)

+l2(kF r23) + l2(kF r13) +
1
2
l(kF r12)l(kF r23)l(kF r13)

]
.

By keeping only n = 2 terms in the two-body distribution
function, the normalization constraint of equation (13) can
be written as,

ρ

∫
(GF (r)−1 − f(r)2)GF (r)dr = −1, (15)

or
〈ψ|ψ〉 = ρ

∫
GF (r)f2(r)dr = 1, (16)

which is the constraint used in our previous works.
Note that ξ = [〈ψ|ψ〉 − 1] plays the role of a small-

ness parameter in the cluster expansion. The above con-
straint introduces another parameter in our formalism, i.e.
the Lagrange multiplier λ. By using the Euler-Lagrange
equation, we minimize the functional L(r, f, f ′) = r2{E2+
λ〈ψ|ψ〉}[f ] with respect to f(r) and we choose λ such that
the above normalization constraint is satisfied, i.e.

∂L
∂f(r)

− ∂

∂r

∂L
∂f ′(r)

= 0. (17)

This leads to the following differential equation:

g′′(r) −
[
A′′(r)
A(r)

+
m

�2
(v(r) − λ)

]
g(r) = 0, (18)

where
g(r) = A(r)f(r) (19)

and
A(r)2 = r2GF (r). (20)

Therefore the constraint is incorporated by solving the
above Euler-Lagrange equation (18) out to certain dis-
tances where the logarithmic derivative of correlation
function f(r) matches that of G− 1

2
F , and then we set the

correlation function equal to G− 1
2

F (note that G− 1
2

F satisfies
the boundary condition f(r → ∞) → 1).

3 Three-body cluster term

In order to test the accuracy of the LOCV method, we use
the calculated two-body correlation function f(r) and the
two-body effective interaction V(r) to evaluate the three-
body cluster energy [18]:

E3 = [E3(2)] + E3(3) + E4(2) = [E3h + E3hh] + E3t + E4h,
(21)

E3h =
1
N

∑
ijk

[〈ijk | h(r13)V(r12) | ijk〉a

+ 〈ik | h(r13) | ik〉a〈ij | V(r12) | ij〉a], (22)

E3hh =
1

2N

∑
ijk

〈ijk | h(r13)V(r12)h(r23) | ijk〉a, (23)

E3t =
1

2N

∑
ijk

〈ijk | �
2

2m
f2(r12)∇2h(r12) · ∇2h(r23) | ijk〉a,

(24)

E4h =
1
N

∑
ijkl

〈ik | h(r13) | jl〉a〈jl | V(r12) | ik〉a. (25)

Note that the last term in the above equation is a
special portion of the four-body terms which are propor-
tional to the smallness parameter ξ, like the three-body
cluster terms. After some straightforward calculations, we
can write equations (22) to (25) as follows:

E3h =
ρ2

2

∫
dr12

∫
dr13h(r13)l(kF r23)V(r12)[−l(kF r23)

+
1
2
l(kF r13)l(kF r12)], (26)

E3hh =
ρ2

2

∫
dr12

∫
dr13h(r13)h(r23)V(r12)

[1 − 1
2
l2(kF r12)−l2(kF r13)+

1
2
l(kF r12)l(kF r23)l(kF r13)],

(27)

E3t =

ρ2

2

∫
dr12

∫
dr13(h(r13) + 1)h′(r12)h′(r23)

(
r12 · r23

r12r23

)

[
1 − 1

2
l2(kF r12) − l2(kF r13)+

1
2
l(kF r12)l(kF r23)l(kF r13)

]
,

(28)

E4h =

ρ3

8

∫
dr12

∫
dr13

∫
dr14h(r34)l(kF r13)l(kF r24)V(r12)

[
l(kF r13)l(kF r24) − 1

4
l(kF r14)l(kF r23)

]
, (29)

where
h(ij) = f2(ij) − 1. (30)
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Table 1. Results of the LOCV calculation for the ground state energy of liquid 3He as afunction of density. The FHNC results
of Krotsscheck [15] and Owen [14] are given for comparison (µ is the FHNC variational parameter [15]). The last column are
the corresponding experimental values [2].

ρ(A−3) µ(FHNC) FHNC(K)[15] FHNC(K)[19] LOCV(K) EXP(K)

0.0100 0.775 –0.906 -0.83 –1.55[–1.25] –

0.0108 0.780 –0.964 - –1.86[–1.31] –

0.0116 0.780 –1.027 - –1.74[–1.29] –

0.0124 0.785 –1.058 - –1.70[–1.11] –

0.0132 0.785 –1.067 - –1.55[–0.80] –

0.0140 0.785 –1.055 –0.75 –1.26[0.30] –

0.0148 0.785 –1.020 - –0.85[0.41] –

0.0156 0.790 –0.963 - –0.77[1.35] –

0.0164 0.790 –0.879 - –0.77[2.57] –2.52

0.0172 0.795 –0.781 - –0.69[4.08] –2.49

0.0180 0.795 –0.640 –0.11 +3.25[5.91] –2.43

Next we simply add the contribution of the three-body
cluster energy, E3, to the two-body energy E2. It is clear
that the sum E2 + E3 should not be considered as the
variational energy, since we have to vary E2 + E3 + . . .
simultaneously to find the upper bound to the true ground
state energy. In other words, E3 is just an estimate to the
three-body cluster energy therefore So E2 + E3 should
not be considered as the upper bound to the true energy.
however, if we find that E3 is very small compared to E2,
i.e. the cluster expansion converges very rapidly, then we
can conclude that TF + E2 is a good approximation for
the upper bound ground state energy of liquid 3He.

4 Results and discussion

In Table 1 we present the result of the LOCV calculation
for the ground state energy of helium 3 liquid for different
densities. The values in the brackets are the same cal-
culation but with the Aziz potential [17]. It is seen that
these energies are rather poor with respect to the cor-
responding experimental saturation value of –2.52 K at
ρ = 0.0164 A−3 [2]. There is not much difference between
Aziz and Lennard-Jones potentials at low densities. The
FHNC results of Krotschrck [15] and Owen [14] are also
given for comparison. The LOCV energies are very similar
to those of FHNC, especially at low densities.

In Figure 1 the LOCV correlation functions are shown
for two different densities, i.e. ρ = 0.01 and 0.018 A−3.
The FHNC correlation functions [15] are also plotted for
comparison. It is seen that the LOCV correlation functions
have much more density dependence than the FHNC cal-
culations. In general, because we have a high density sys-
tem with strong repulsive cores, we expect that the cor-
relation functions show a strong density dependence such
as those of LOCV, rather than the weak one produced by
FHNC calculations.

In order to see the effect of normalization constraint,
in Figure 2 we have plotted the ratio of three-body to
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Fig. 1. Comparison of the LOCV correlation functions at two
different density, ρ = 0.01 (full curve) and 0.018 fm−3 (dashed
curve). The FHNC results of Krotscheck [15] are also given for
µ = 0.775 (heavy full) and 0.795 (heavy dashed) for both pf
the above densities.

two-body cluster energies versus χ (the convergence pa-
rameter at ρ = 0.015 A−3). It is seen that the ratios are
small especially near χ = 0, and we can conclude that the
normalization constraint forces the higher cluster terms to
become small. One should notice that near χ = 0.25, the
two-body energy becomes zero at ρ = 0.015 A−3. There-
fore the ratios show a large peak.

In order to improve our LOCV result presented in Ta-
ble 1, we have extended our two-body distribution func-
tion to include three-body correlation (n = 3) in equa-
tion (14). We have used the new distribution function in
the normalization constraint (Eq. (13)). With this change,
the Euler-Lagrange differential equation (18) becomes an
integral-differential equation in terms of f(r12). We have
solved this equation iteratively with our constraint un-
til the energy is saturated, i.e until the continuation of
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Fig. 2. Ratio of E3/E2 versus χ.

iteration does not change the energy at each density. The
result of LOCV calculation with an extended constraint
(LOCVE) for the ground state of liquid 3He is plotted in
Figure 3 (full curve). The dashed curve is the LOCVE with
contributions from the three-body cluster energy. How-
ever, as we have pointed out before, this can not be consid-
ered as the variational energy. The heavy-full, dashed and
dotted curves are the experimental [2], diffusion (DMC)
and variational (VMC) Monte Carlo [13] calculations re-
spectively. There is overall agreement between them at low
densities ρ < 0.018 A−3. However, beyond this density the
LOCVE result shows much more density dependence than
the experimental data, DMC and VMC calculations.

Finally in Figure 4 we compare the LOCV and LOCVE
healing distances. It is shown that the correlation func-
tions have longer range in the case of LOCVE than LOCV.

In conclusion, we have developed the LOCVE formal-
ism to calculate the ground state energy of liquid 3He. It
is shown that while the three-body cluster energy is small,
the three-body correction to the normalization constraint
plays an important role in the ground state energy cal-
culation of liquid 3He. Therefore one can conclude that
for high density systems, the correction to the two-body
distribution is much more important than the same cor-
rection for the energy calculations. On the other hand,
the normalization constraint plays an important role in
keeping the higher order cluster terms small in the cluster
expansion series. It was also shown that the LOCVE gives
the same result as the more sophisticated methods such
as DMC and VMC.
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under the grants provided by its Research Council.
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